—In this paper, we present a coordinate rotation digital computer (CORDIC) based fast algorithm for power-of-two point DCT, and develop its corresponding efficient VLSI implementation. The proposed algorithm has some distinguish advantages, such as regular Cooley-Tukey FFT-like data flow, identical post-scaling factor, and arithmetic-sequence rotation angles. By using the trigonometric formula, the number of the CORDIC types is reduced dramatically. This leads to an efficient method for overcoming the problem that lack synchronization among the various rotation angles CORDICs. By fully reusing the uniform processing cell (PE), for 8-point DCT, only four carry save adders (CSAs)-based PEs with two different types are required. Compared with other known architectures, the proposed 8-point DCT architecture has higher modularity, lower hardware complexity, higher throughput and better synchronization.