Inhibition of inflammasome activation is a potential therapeutic strategy for treating nonalcoholic fatty liver disease (NAFLD). Pogostone (PO), an active ingredient in Pogostemon cablin, exhibits various pharmacological properties, including anti-inflammation. However, there are no reports of the hepatoprotective effects of PO in NAFLD induced by a high-fat diet (HFD). Molecular biology methods and molecular docking analysis were used to determine the therapeutic effects and mechanisms of PO in NAFLD in vitro and in vivo. Results showed that in vitro, PO reduced lipid deposition, accelerated fatty acid oxidation (FAO), and inhibited the inflammatory response by elevating mRNA expression of FAO genes and decreasing mRNA expression of proinflammatory genes such as NLRP3. In vivo, PO significantly reduced body weight and liver fat deposition and lowered the generation of inflammatory factors, thereby ameliorating liver fibrosis and liver injury. The hepatoprotective effect of PO against HFD was largely impaired in NLRP3−/− mice. Molecular docking experiments demonstrated a strong interaction between PO and NLRP3. In conclusion, PO decreased fat deposition and the inflammatory response by inhibiting NLRP3 expression, resulting in the alleviation of NAFLD. Our study suggests that PO may be a promising treatment for NAFLD.
Read full abstract