The existence of halogen, chalcogen, pnicogen, and tetrel bonds as variants of noncovalent σ and π-hole bonds is now widely accepted, and many of their properties have been elucidated. The ability of the d-block transition metals to potentially act as Lewis acids in a similar capacity is examined systematically by DFT calculations. Metals examined span the entire range of the d-block from Group 3 to 12, and are selected from several rows of the periodic table. These atoms are placed in a variety of neutral MXn molecules, with X = Cl and O, and paired with a NH3 nucleophile. The resulting M⋯N bonds tend to be stronger than their p-block analogues, many of them with a substantial degree of covalency. The way in which the properties of these bonds is affected by the row and column of the periodic table from which the M atom is drawn, and the number and nature of ligands, is elucidated.