Due to the non-optimal response of most types of cancer to various treatment methods and their rapid progress, research continues in the field of producing drugs with less toxicity and greater efficiency. There are many nanocomposites with diverse biological activities that include part of anticancer drugs in new pharmacological science. The present investigation describes a green procedure for the in situ support of Ag nanoparticles (NPs) over sodium lignosulfonate (NaLS) modified magnetic nanoparticles (Fe3O4@NaLS/Ag) and its subsequent biological and chemical performance. FT-IR, TEM, FE-SEM, EDS, ICP, VSM and XRD techniques were used to characterize the synthesized Fe3O4@NaLS/Ag. The catalytic efficacy of the desired composite was applied in the N-acetylation of various amines in the presence of Ac2O under solvent-free conditions. The Fe3O4@NaLS/Ag catalyst was recovered by an external magnet and reused for nine runs without a significant decrease in the activity. The cytotoxic and anti-cutaneous squamous cell carcinoma potentials of biologically synthesized Fe3O4@NaLS/Ag nanocomposite against PM1 and MET1 cells were determined. The anti-cutaneous squamous cell carcinoma properties of the Fe3O4@NaLS/Ag nanocomposite could significantly remove PM1 and MET1 cells. The IC50 of Fe3O4@NaLS/Ag nanocomposite was 288 and 270 μg/mL against PM1 and MET1 cells, respectively. Also, Fe3O4@NaLS/Ag nanocomposite presented a high antioxidant potential according to the IC50 value. According to the above results, the recent nanocomposite can be used in treating cutaneous squamous cell carcinoma after doing clinical trial studies.
Read full abstract