In the automotive industry there is a clear trend towards alternative drivetrain systems, away from the classical internal combustion – gasoline or diesel - engines. This poses a challenge to the traditional markets of powder metallurgy, the ferrous precision parts for automotive engines and transmissions which form the major tonnage of today’s powder metallurgy [1, 2], but also the hardmetal tools for machining automotive components from stock material or for finishing [3]. To counter these trends, powder metallurgy can rely on its high flexibility regarding materials, geometries, processing and properties and finally applications, which enables PM to adapt itself to changing requirements in a changing industrial environment [4]. In the present article, examples are given both for PM precision parts and hardmetals but also functional materials such as soft magnetic composites. It is shown that the potential of ferrous PM parts regarding mechanical performance is still higher than currently used, high and graded density being attractive ways [5]. Also the use of advanced alloying systems offers economical and technical advantages and should enable PM to enter non-automotive markets for precision parts. In the hardmetal branch, non-automotive applications, e.g. in construction and mining, should be considered while from the material viewpoint replacing tungsten and in particular Co as binder metal are intensely studied. PM functional materials such as Fe-Ni, Fe-Co and in particular soft magnetic composites will find markets in electrical drive systems [6], enabling new designs for electric motors. On the other end of the spectrum, superhard rare earth magnets are regularly produced by the powder route. Finally, the multitude of additive manufacturing techniques offers chances for powder metallurgy since most of these processes start from metal powders [7]. In addition to the well known laser and electron beam based “direct” AM systems, also indirect, binder-based, variants are attractive, avoiding many problems encountered with the direct systems and enabling transfer of knowhow accumulated in metal injection moulding. In general, future will show how many other technologies and products has to offer in addition to the classical press-and-sinter routes which however will remain for their specific product groups. when designing your figures and tables, etc