In this study, the last ply failure (LPF) load of composite laminates with VO-notches under pure mode I and mixed mode I/II was investigated experimentally, analytically, and numerically. The efficiency of the virtual isotropic material concept (VIMC) in combination with a new combined failure criterion was also evaluated. The J-integral and average strain energy density failure criteria were combined with VIMC. Using analytical expressions for the J-integral and the average strain energy density (ASED), the prediction of the fracture load of notched components was simplified and expedited. The experimental fracture loads of notched specimens were determined for quasi-isotropic and cross-ply laminates under mode I and mixed mode I/II. The fracture loads were predicted using analytical expressions for the J-integral and ASED, combined with VIMC. The VIMC-ASED and VIMC-J-integral failure criteria demonstrated good accuracy in predicting the LPF, with the highest accuracy for mode I, slightly reduced accuracy for mixed mode I/II. VIMC, in combination with energy-based failure criteria, effectively predicts the fracture load. The use of analytical expressions further simplified and expedited the prediction process without losing accuracy, making it a practical approach for engineering applications. Additionally, this approach significantly reduces the time and cost associated with extensive experimental testing.