In this paper, a comparative study for structural design of battery thermal management system is presented for electric vehicles. A thermal model for the pouch battery pack with liquid cooling is developed for thermal analysis of various pack designs. Typical battery pack with fin-cooling structure is set as a reference design, and thermal behavior of the battery pack is examined in the aspect of cooling performance and temperature uniformity. Numerical results indicate that poor heat conductivity from the bottom of the cell stack to the cooling plate is one of the major barriers to the efficient heat dissipation and asymmetric design of fin-cell arrangement have negative effect on the temperature uniformity of the battery pack. To improve the performance of the thermal management system, various structural designs are suggested and evaluated based on plural criteria. A new structural design for the large-scale battery pack is suggested to enhance the cooling performance and temperature uniformity of the battery pack minimizing the increase in system volume, weight, and pressure drop.