Taking advantage of its high-temperature resistance and elongation properties, conductive-coated polyetheretherketone (PEEK) filament yarn can be used as a textile-based electroconductive functional element, in particular as a strain sensor. This study describes the development of electrical conductivity on an inert PEEK filament surface by the deposition of metallic nickel (Ni) layers via an electroless galvanic plating process. To enhance the adhesion properties of the nickel layer, both PEEK multifilament and monofilament yarn surfaces were metalized by plasma torch pretreatment, followed by nickel plating. Electrical characterizations indicate the potential of nickel-coated PEEK for structural monitoring in textile-reinforced composites. In addition, surface energy measurements before and after plasma torch pretreatment, surface morphology, nickel layer thickness, chemical structure changes, and mechanical properties were analyzed and compared with untreated PEEK. The thickness of the Ni layer was measured and showed an average thickness of 1.25 µm for the multifilament yarn and 3.36 µm for the monofilament yarn. FTIR analysis confirmed the presence of new functional groups on the PEEK surface after plasma torch pretreatment, indicating a successful modification of the surface chemistry. Mechanical testing showed an increase in tensile strength after plasma torch pretreatment but a decrease after nickel plating. In conclusion, this study successfully developed conductive PEEK yarns through plasma torch pretreatment and nickel plating.
Read full abstract