Diabetic neuropathy is one of the prevalent and debilitating microvascular complications of diabetes mellitus, affecting a significant portion of the global population. Relational preclinical animal models are essential to understand its pathophysiology and develop effective treatments. This abstract provides an overview of current knowledge and advancements in such models. Various animal models have been developed to mimic the multifaceted aspects of human diabetic neuropathy, including both type 1 and type 2 diabetes. These models involve rodents (rats and mice) and larger animals like rabbits and dogs. Induction of diabetic neuropathy in these models is achieved through chemical, genetic, or dietary interventions, such as diabetogenic agents, genetic modifications, or high-fat diets. Preclinical animal models have greatly contributed to studying the intricate molecular and cellular mechanisms underlying diabetic neuropathy. They have shed light on hyperglycemia-induced oxidative stress, neuroinflammation, mitochondrial dysfunction, and altered neurotrophic factor signaling. Additionally, these models have allowed for the investigation of morphological changes, functional alterations, and behavioral manifestations associated with diabetic neuropathy. These models have also been crucial for evaluating the efficacy and safety of potential therapeutic interventions. Novel pharmacological agents, gene therapies, stem cell-based approaches, exercise, dietary modifications, and neurostimulation techniques have been tested using these models. However, limitations and challenges remain, including physiological differences between humans and animals, complex neuropathy phenotypes, and the need for translational validation. In conclusion, preclinical animal models have played a vital role in advancing our understanding and management of diabetic neuropathy. They have enhanced our knowledge of disease mechanisms, facilitated the development of novel treatments, and provided a platform for translational research. Ongoing efforts to refine and validate these models are crucial for future treatment developments for this debilitating condition.
Read full abstract