AbstractAbstract 3696 Background:Bortezomib is potent and reversible proteasome inhibitor that has been extensively used for multiple myeloma. Several clinical studies demonstrated that overall response rates using bortezomib alone to relapsed or refractory patients with multiple myeloma were 33 to 50%. The most common grade 3 adverse event was a cyclic thrombocytopenia, which was reported in 20–30% of patients in several clinical studies. The mechanism by which bortezomib causes thrombocytopenia remains unknown. In this study, we evaluated the effect of bortezomib on megakaryocytic progenitor cells, megakaryocytopoiesis, megakaryocyte and platelet production in mice. Method:All animal procedures were approved by the Institutional Animal Care and Use Committee in Iwate Medical University. Male ddY at 8 weeks of age mice were used in all experiments. In vivo experiments: (a) The mice received 2.5 mg/kg bortezomib via tail-vein injection. Blood was obtained and the following experiments were carried out at day 2, 4, 6, 8, 10 after intravenous injection (n=9, each group). Complete blood counts were measured. Reticulated platelet (RP) was analyzed by flow cytometry using thiazole orange (TO) to evaluate platelet kinetics. Plasma TPO level were measured by ELISA. Bone marrow megakaryocyte's number and morphology from femur in bortezomib- and control-treated mice were observed by microscopy. Femur was fixed in 10% buffered formalin, decalcificated, embedded in paraffin and stained for Hematoxylin-Eosin (H-E). (b) Bortezomib (2.5 mg/kg) was administrated via tail-vein to mice. After 24hr, bone marrow cells were cultured in MegaCult®-C at 5% CO2 and 20% O2for 7 days. The megakaryocytic colonies (CFU-Megs-in vivo) were counted. In vitro experiments: (c) Bone marrow cells, obtained from non-treated mice, were cultured at 37°C in 5% CO2and 20% O2 for 7 days with bortezomib (0.01, 0.1, 1, 10, 100 ng/ml). CFU-Megs were counted (CFU-Megs-in vitro). (d) Proplatelet formation: Murine megakarocytes were partially purified from bone marrow using BSA gradient. They were plated in 96 micro-well culture plates (300 megakaryocyte)well) and cultured in IMDM in duplicates, supplemented with 1 × ITS-G (Life technologies) and each concentration of bortezomib (0.01, 0.1, 1, 10, 100 ng/ml), at 37°C in 5% CO2and 20% O2. After 24 hr incubation, the megakaryocytes with proplatelets in each well were counted. Results:(a) Control mice did not have any significant change in platelet counts, % reticulated platelets and plasma TPO levels at days 0, 2, 4, 6, 8, 10. While, bortezomib treated mice (2.5mg/kg) had a significant reduction in platelet counts at day 2 (470 ± 210 × 109/L. P<0.001), at day 4 (667 ± 118 × 109/L, P<0.001). The platelet counts returned to normal value at day 6 (903 ± 548 × 109/L) and day 10 (1122 ± 187 × 109/L). RP (%) began to increase at day 6 (8.8 ± 4.0 %). Plasma TPO levels tend to increase at day 4. Means megakaryocytes's number in one field of femur was similar in between bortezomib non-treated and –treated mice. The megakaryocytes were similar in morphology at each day, too. (b) CFU-Megs-in vivo were similar in number between bortezomib non-treated and –treated mice (38.0 ± 6.1 vs 34.5 ± 5.6 per 1 × 105 bone marrow cells respectively). (c) CFU-Megs-in vitro were not decreased significantly at 0.001 to 1 ng/ml and decreased significantly (p<0.01) at 10 and 100 ng/ml of bortezomib. (d) Proplatelet formation (PPF) were decreased significantly at 0.01, 0.1, 1, 10, 100 ng/ml bortezomib (0 mg)ml: 25.2 ± 4.8%, 0.01ng/ml: 23.8 ± 4.9%, 0.1 ng/ml: 18.4 ± 3.1% p<0.01, 1 ng/ml: 13.2 ± 3.8% p<0.001, 10 ng/ml: 13.3 ± 2.1% p<0.001, 100ng/ml: 5.9 ± 1.4 % p<0.001). Discussion & Conclusion:Bortezomib did not adversely affect on megakaryocytic prognitors nor megakaryocytes. It did inhibit PPF, that is, the step of platelet production, even when bortezomib plasma concentration levels have gone down. Plasma TPO level showed an inverse relationship against circulating platelet counts. Based on the evidence in which Cmax of plasma bortezomib concentration was under 100 ng/ml in bortezomib-injected mice (2.5mg/kg), bortezomib induced thrombocytopenia might be due to the inhibition of proplatelet formation of megakaryocyte. Disclosures:No relevant conflicts of interest to declare.
Read full abstract