This research focuses on the simulation of ballistic impact on multi-layered ballistic resistant armour. The efficiency of spring-loaded backing plate armour was compared with armour that has solid end plate with a view to introducing a more elastic surface that enhances energy absorption properties. The design consists of three major layers of different materials: fibre cement as the first layer; Kevlar as the second; and a spring-loaded backing plate made of steel as the third layer. SolidWorks was used to model the multi-layered armour and ANSYS Workbench Explicit Dynamics and AUTODYN 3D solver were used to simulate the ballistic impact. The simulation involved testing different configurations of the multi-layered structure. Analysis of the effect of the spring wire diameter on the armour's energy-absorbing characteristics was carried out while keeping the overall weight within the acceptable range. The simulation results for the different configurations were compared and the ballistic-resistant armour designed with a spring-loaded backing plate of 0.40 mm spring wire diameter gave the least deformation. The research suggested an enhanced armour performance using embedded elastic material.
Read full abstract