This paper first detects hidden system from plastic deformation of metallic glasses by sparse identification. The extracted model simulates four types of stress-time curves and displays the prediction of serrated events. This interpretation effectively explains various experimental phenomena of repeated yielding. Further, in terms of parametric sensitivity analysis to the model, two parameters are taken as bifurcation parameter, and the analysis of codimension-one and codimension-two bifurcation are carried out to excavate the causes of dynamic transformation, including saddle–node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation and cusp bifurcation. Different bifurcation points correspond different types of stress-time curves. The homologous phase diagrams including periodic orbit, unstable orbit and chaotic behavior are presented to show the dynamics diversity of the model. In addition to dynamic analysis, statistical analysis for plasticity values is also applied to excavate the crossover between periodic and chaotic plastic dynamic transitions. Our results provide a novel perspective on the deformation of metallic glasses from the viewpoint of dynamic model and are also important for evaluating the plastic deformation properties of metallic glasses in practical applications.
Read full abstract