Tranexamic acid (TXA) is an anti-fibrinolysis agent widely used in postoperative blood loss management. As a highly water-soluble drug, TXA is suffering from rapid clearance from the action site, therefore, large amount of drug is required when administered either by intravenously or topically. In this study, a TXA preparation with prolonged action site residence was designed using the nano-micro strategy. TXA nanoparticles were dispersed in oil by emulsification followed by lyophilization to give a solid-in-oil suspension, which was used as the oil phase for the preparation of TXA-loaded solid-in-oil-in-water (TXA@S/O/W) system. The particle size of TXA in oil was 207.4 ± 13.50 nm, and the particle size of TXA@S/O/W was 40.5 μm. The emulsion-in-gel system (TXA@S/O/G) was prepared by dispersing TXA@S/O/W in water solution of PLGA-b-PEG-b-PLGA (PPP). And its gelling temperature was determined to be 26.6 ℃ by a rheometer. Sustained drug release was achieved by TXA@S/O/G with 72.85 ± 7.52 % of TXA released at 120 h. Formulation retention at the joint cavity was studied by live imaging, and the fluorescent signals dropped gradually during one week. Drug escape from the injection site via drainage and absorption was investigated by a self-made device and plasma TXA concentration determination, respectively. TXA@S/O/G showed the least drug drainage during test, while more than 70 % of drug was drained in TXA@S/O/W group and TXA solution group. Besides, low yet steady plasma TXA concentration (less than 400 ng/mL) was found after injecting TXA@S/O/G into rat knees at a dosage of 2.5 mg/kg, which was much lower than those of TXA dissolved in PPP gel or TXA solution. In conclusion, sustained drug release as well as prolonged action site retention were simultaneously achieved by the designed TXA@S/O/G system. More importantly, due to the steady plasma concentration, this strategy could be further applied to other highly water-soluble drugs with needs on sustained plasma exposure.
Read full abstract