Plant elicitor peptide 1 (Pep1) is one of plant-derived damage-associated molecular patterns (DAMPs) involved in the regulation of multiple biological processes, including immune response and root growth. The exogenous application of Pep1 was shown to inhibit root growth by affecting the auxin content and extracellular pH level in the transition zone (TZ). However, the signaling relationship between extracellular pH and auxin in Pep1-regulated root growth inhibition has not been explored. Our study here suggested that both pH signaling and auxin signaling were responsible for Pep1-regulated root growth inhibition, and the Pep1-induced auxin accumulation in TZ depended on apoplastic acidification. To increase the apoplastic pH in TZ, we mutated the AHA2 and found that the mutants of aha2-4 and pin2aha2-4 both reduced Pep1-induced auxin content in TZ, thereby alleviating root growth inhibition. Thus, our results reveal a new auxin-pH signaling crosstalk mechanism in regulating root growth, and provide new insights into the function of Pep1 in regulating root growth in Arabidopsis.