SLC41A1 (solute carrier family 41, member A1) is a recently described vertebrate member of the MgtE family of Mg(2+) transporters. Although MgtE transporters are found in both prokaryotic and eukaryotic organisms, and are highly conserved, little is known about the regulation of their Mg(2+) transport function. In the present study, we have shown that endogenous SLC41A1 transporter expression is post-transcriptionally regulated by extracellular Mg(2+) in TRPM7 (transient receptor potential cation channel, subfamily M, member 7)-deficient cells, suggesting that SLC41A1 transporters underlie a novel plasma membrane Mg(2+) transport function. Consistent with this conclusion, structure-function analyses of heterologous SLC41A1 transporter expression demonstrate that SLC41A1 transporters exhibit the same plasma membrane orientation as homologous bacterial MgtE proteins, are capable of complementing growth of TRPM7-deficient cells only when the Mg(2+) transporting pore is intact, and require an N-terminal cytoplasmic domain for Mg(2+)-dependent regulation of lysosomal degradation and surface expression. Taken together, our results indicate that SLC41A1 proteins are a central component of vertebrate Mg(2+) transport systems, and that their Mg(2+) transport function is regulated primarily through an endosomal recycling mechanism involving the SLC41A1 N-terminal cytoplasmic domain.
Read full abstract