Human adenovirus type 7 (HAdV-7) is a prominent pathogen that causes severe pneumonia in children in China. However, the interaction between HAdV-7 infection and host metabolism is still poorly understood. To gain a comprehensive understanding of the metabolic interplay between host cells and the virus, we analysed the energy and lipid metabolism profiles of the HAdV-7-infected lung cancer cell line A549 by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (ESI-QTRAP-MS/MS). Our study revealed significant alterations in various metabolic processes, including the tricarboxylic acid cycle, purine and pyrimidine metabolism, amino acid metabolism, nucleotide metabolism, and lipid metabolism, in A549 cells after HAdV-7 infection. Moreover, HAdV-7 infection stimulated enhanced synthesis of membrane lipids in A549 cells. These findings emphasize the crucial role of metabolism in viral infection and suggest that modulating host cell metabolism could be a promising approach for targeted drug development and infection control.