Ectoine (ECT) has recently gained considerable interest in the healthcare sector due to its promising therapeutic benefits in a variety of human disorders. This research aimed to quantify the ECT plasma level in rats by creating and optimizing a sensitive and validated UPLC-MS/MS method. Prior to analysis, ECT extraction from the plasma samples was conducted via a protein precipitation procedure, using hydroxyectoine as an internal standard (IS). A 1.7 μm UPLC C8 column (100 mm × 2.1 mm) was selected for the chromatographic separation, using a gradient mobile phase consisting of acetonitrile and 0.05% formic acid. The electrospray ionization mass spectrometry (ESI-MS) was used to detect ECT in the positive ion mode. To determine the specific precursor and the product ions of ECT, multiple reaction monitoring (MRM) methods were carried out. The selected ion pair of ECT was 143.1 > 97 and 159.1 > 113.13 for the IS. The ECT’s linearity range in rat plasma was found to be 1-1000 ng/mL, with a recovery rate of 96.48–97.37%. Consistent with FDA guidelines for bio-analytical method validation, the suggested method was validated. The method was efficiently employed to quantify the studied drug in spiked rat plasma with good accuracy and precision with no significant matrix effects. Furthermore, it was effectively used to investigate the pharmacokinetic behavior of ECT in rats after a single oral dose of 30 mg/kg.
Read full abstract