In this paper, the Newtonian equation of motion describing the movement of electrons when electromagnetic waves propagate in a magnetized plasma is combined with the traditional auxiliary differential equation finite difference time domain (ADE-FDTD) method. The FDTD iterative formulas of transverse magnetic (TM) wave and transverse electric (TE) wave of the electromagnetic wave obliquely incident on the magnetized time-varying plasma plate are derived. The biggest difference between this method and the ordinary ADE-FDTD algorithm is the addition of the logarithmic derivative of the time-varying plasma electron density to calculate the current density, which is called the Newton-ADE-FDTD method. Through Example 1, the reflection coefficient of electromagnetic wave incident on the magnetization time-varying plasma plate was calculated, and the correctness of the improved algorithm was verified. At the same time, the Newton-ADE-FDTD algorithm is used to calculate the reflection coefficient of electromagnetic waves incident on the magnetized plasma-dielectric photonic crystal. The results show that different incident angles have a greater impact on the reflection coefficients of left-handed circularly polarized wave (LCP) and right-handed circularly polarizedwave (RCP).
Read full abstract