Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation. Older adults with early CKD (estimated glomerular filtration rate (eGFR) 30-60ml/min/1.73 m2; CKDG3a/b; n = 35) or normal renal function (eGFR >90ml/min/1.73 m2; CKDG1; n = 35) received 12,000, 24,000 or 48,000IU D3/month for 1year. Markers of the renal-bone axis, inflammation and iron status were investigated pre- and post-supplementation. Predictors of c-terminal and intact FGF23 (cFGF23; iFGF23) were identified by univariate and multivariate regression. Pre-supplementation, comparing CKDG3a/b to CKDG1, plasma cFGF23, iFGF23, PTH, sclerostin and TNFα were significantly higher and Klotho, 1,25-dihydroxyvitamin D and iron were lower. Post-supplementation, only cFGF23, 25(OH)D and IL6 differed between groups. The response to supplementation differed between eGFR groups. Only in the CKDG1 group, phosphate decreased, cFGF23, iFGF23 and procollagen type I N-propeptide increased. In the CKDG3a/b group, TNFα significantly decreased, and iron increased. Plasma 25(OH)D and IL10 increased, and carboxy-terminal collagen crosslinks decreased in both groups. In univariate models cFGF23 and iFGF23 were predicted by eGFR and regulators of calcium and phosphate metabolism at both time points; IL6 predicted cFGF23 (post-supplementation) and iFGF23 (pre-supplementation) in univariate models. Hepcidin predicted post-supplementation cFGF23 in multivariate models with eGFR. Alterations in regulators of the renal-bone axis, inflammation and iron status were found in early CKD. The response to vitamin D3 supplementation differed between eGFR groups. Plasma IL6 predicted both cFGF23 and iFGF23 and hepcidin predicted cFGF23.