Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Read full abstract