We examined whether plant-type phosphoenolpyruvate carboxylase (PEPC) is involved in flower organ formation or not by over-expression in Arabidopsis. A wheat PEPC isogene Tappc3A, belonging to the ppc3 group, was targeted due to its preferential expression pattern in pistils and stamens. Transgenic Arabidopsis over-expressing Tappc3A exhibited irregular stamen formation, i.e., a lesser number of stamens per flower and shorter filaments in T2 and T3 generations. Irregular stamens were frequently observed in homozygous T4 lines, but no morphological change was observed in other floral organs. High-degree gene co-expression of Tappc3 isogenes with wheat SEEDSTICKs but not with other homeotic transcription factor genes for flower formation implicates that Tappc3 is under control by the class D genes of the ABCDE model to flower development. In addition, the conservation of CArG box sequences on the Tappc3 promoters supported the developmentally programmed gene expression of ppc3 in wheat flowering organs. Thus, this study provides the first experimental evidence for the critical regulation of plant-type PEPC for flower formation.
Read full abstract