The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells (PSC), which are considered the future of photovoltaics. Therefore, the main objective of this research was to assess the environmental impact of the construction materials of monocrystalline and perovskite photovoltaic power plants toward their sustainable development. The research object was the construction materials and components of two 1 MW photovoltaic power plants: one based on monocrystalline modules and the other on perovskite modules. The life cycle assessment (LCA) method was used for the analyses. The IMPACT World+, IPCC and CED models were used in it. The analyses were performed separately for five sets of elements: support structures, photovoltaic panels, inverter stations, electrical installations and transformers. Two post-consumer management scenarios were adopted: storage and recycling. The life cycle of a photovoltaic power plant based on photovoltaic modules made of perovskite cells is characterized by a smaller negative impact on the environment compared to traditional power plants with monocrystalline silicon modules. Perovskites, as a construction material of photovoltaic modules, fit better into the main assumptions of sustainable development compared to cells made of monocrystalline silicon. However, it is necessary to conduct further work which aims at reducing energy and material consumption in the life cycles of photovoltaic power plants.
Read full abstract