In plants, microtubule and actin cytoskeletons are involved in key processes including cell division, cell expansion, growth and development, biotic and abiotic stress, tropisms, hormonal signalling as well as cytoplasmic streaming in growing pollen tubes. Kinesin enzymes have a highly conserved motor domain for binding microtubule cytoskeleton assisting these motors to organise their own tracks, the microtubules by using chemical energy of ATP hydrolysis. In addition to this conserved binding site, kinesins possess non-conserved variable domains mediating structural and functional interaction of microtubules with other cell structures to perform various cellular jobs such as chromosome segregation, spindle formation and elongation, transport of organelles as well as microtubules-actins cross linking and microtubules sliding. Therefore, how the non-motor variable regions specify the kinesin function is of fundamental importance for all eukaryotic cells. Kinesins are classified into ~17 known families and some ungrouped orphans, of which ~13 families have been recognised in plants. Kinesin-14 family consisted of plant specific microtubules minus end-directed motors, are much diverse and unique to plants in the sense that they substitute the functions of animal dynein. In this review, we explore the functions of plant kinesins, especially from non-motor domains viewpoint, focussing mainly on recent work on the origin and functional diversity of motors that drive microtubule minus-end trafficking events.
Read full abstract