Coniferous trees produce secondary or defense chemicals, such as terpenes, against pest insects. Terpenes could serve as constitutive or induced defensive mechanisms, defending the tree from invasive herbivores. The Mediterranean pine shoot beetle Tomicus destruens colonizes stems and branches of Pinus brutia trees and even can kill mature trees during periodic outbreaks. We investigated whether terpene profiles of needle and stem of P. brutia trees differ between health and those infested by T. destruens. We selected 20 healthy and T. destruens-infested trees and analyzed the monoterpenes and sesquiterpenes of their needles and phloem. We found higher concentrations of tricyclene, camphene and p-cymene in the phloem of infested trees. Similarly, the needles of infested trees had higher concentrations of α-pinene, β-pinene, myrcene, limonene, trans-β-caryophyllene and α-humulene than healthy trees. These results show that the monoterpene and sesquiterpene profiles of P. brutia trees differed between healthy and infested trees, suggesting that volatile terpenes may be an important part of plant-induced responses against T. destruens.
Read full abstract