Plant glutathione peroxidase (GPX) plays an important role in the maintenance of cell homeostasis and in the antioxidant response in plants. In this study, the peroxidase (GPX) gene family was identified in the whole genome of pepper using bioinformatic method. As a result, a total of 5 CaGPX genes were identified, which were unevenly distributed on 3 of the 12 chromosomes of pepper genome. Based on phylogenetic analysis, 90 GPX genes in 17 species from lower plants to higher plants can be divided into 4 groups (GroupⅠ, Group Ⅱ, Group Ⅲ, Group Ⅳ). The MEME Suite analysis of GPX proteins shows that all these proteins contain four highly conserved motifs, as well as other conserved sequences and amino acid residues. Gene structure analysis revealed the conservative exon-intron organization pattern of these genes. In the promoter region of CaGPX genes, many cis elements of plant hormone and abiotic stress response were identified in each of CaGPX proteins. In addition, expression patterns of CaGPX genes in different tissues, developmental stages and responses to abiotic stress were also performed. The results of qRT-PCR showed that the transcripts of CaGPX genes varied greatly under abiotic stress at different time points. There results suggest that the GPX gene family of pepper may play a role in plant development andstress response. In conclusion, our research provides new insights into the evolution of pepper GPX gene family, and understanding for functional of these genes in response to abiotic stresses.