Melatonin and melatonin-mediated phytohormonal crosstalk play a multifaceted role in improving drought stress tolerance via molecular mechanisms and biochemical interactions in horticultural plants. The physical, physiological, biochemical, and molecular characteristics of plants are all affected by drought stress. Crop yield and quality eventually decline precipitously as a result. A phytohormone, melatonin, controls several plant functions during drought stress. However, the interactions between melatonin and other phytohormones, particularly how they control plant responses to drought stress, have not been clearly explored. This review explores the effects of melatonin and particular phytohormones on improving plant tolerance to drought stress. Specifically, the key melatonin roles in improved photosynthetic performance, better antioxidant activities, up-regulated gene expression, increased plant growth, and yield, etc., during drought stress have been elucidated in this review. Furthermore, this review explains how the intricate networks of melatonin-mediated crosstalk phytohormones, such as IAA, BR, ABA, GA, JA, CK, ET, SA, etc., enable horticultural plants to tolerate drought stress. Thus, this research provides a better understanding of the role of phytohormones, mainly melatonin, elucidates phytohormonal cross-talks in drought stress response, and future perspectives of phytohormonal contributions in plant improvements including engineering plants for better drought stress tolerance via targeting melatonin interactions.