This paper presents an approach to estimate the hosting capacity for distribution networks considering the impact of PV penetration at different voltage levels. The estimation and the method were selected such that the results were most suitable for distribution system planning. A time-series based method was used as it covers significant aspects needed for prioritising network reinforcement. The MV background voltage was modelled varying in time, assuming the same penetration level in the other LV networks supplied by the same MV system. The hosting capacity is defined as the maximum acceptable PV size per customer for a given PV penetration. Based on the different possible combinations of PV location, the probability of overvoltage and overloading is used as a performance index. The planning risk is used as a limit for the performance criterion. The method can be automated for a large number of networks due to using an IEC 61970-based input format. It also enables linking DSO network models to customer smart metre databases. The severity and risks of limit violations are analysed with different metrics from the time-series simulations. The change in background voltage with increasing penetration is shown to impact the results significantly. When considering it, the estimated hosting capacity was reduced by 32 %, on average.