The conventional approach to appearance prediction for 3D printed parts is to print a thin slab of material and measure its reflectance or transmittance with a spectrophotometer. Reflectance works for opaque printing materials. Transmittance works for transparent printing materials. However, the conventional approach does not work convincingly for translucent materials. For these, we need to separate scattering and absorption. We suggest printing a collection of thin slabs of different thicknesses and using these in a spectrophotometer to obtain the scattering and absorption properties of the material. A model is fitted to the measured data in order to estimate the scattering and absorption properties. To this end, we compare the use of Monte Carlo light transport simulation and the use of an analytic model that we developed from the theory of radiative transfer in plane-parallel media. We assess the predictive capabilities of our method through a multispectral photo-render comparison based on the estimated optical properties.
Read full abstract