Malaria threatens pregnant women and their babies, particularly in Africa. This century, the number of women at risk of malaria in pregnancy has decreased globally, apart from in Africa, where it has increased. Low and sub microscopic infections are increasingly documented but remain hard to diagnose with current point-of-care tests, and their contribution to morbidity and transmission are unclear. Artemether-lumefantrine has been endorsed for treatment in first trimester, but many women attend antenatal clinics later in pregnancy, and reaching high-risk young, first-time mothers is particularly difficult. Small-for-gestational-age babies frequently result from malaria, which affects the placenta's development and its functions such as nutrient transport. Resistance to continues to increase to sulphadoxine-pyrimethamine, the mainstay of intermittent preventive treatment in pregnancy. The alternative, dihydroartemisinin-piperaquine controls malaria better, but does not improve pregnancy outcomes, suggesting that sulphadoxine-pyrimethamine may have nonmalarial effects including improving gut function or reducing dangerous inflammation. Understanding of how the malaria parasite uses the VAR2CSA protein to bind to its placental receptor is increasing, informing the search for a vaccine to prevent pregnancy malaria. Progress in several areas increases optimism that improved prevention and control of malaria in pregnancy is possible, but obstacles remain.
Read full abstract