Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020. Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform, the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods. Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ. Conclusions: The magnetic variations associated with the EQ and occurring before and during the EQ have been studied in the 1-1000 s period range. Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulse