Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative biofilm-forming opportunistic human pathogen whose vital mechanism is biofilm formation for better survival. PelA and PelB proteins of the PEL operon are essential for bacterial-synthesized pellicle polysaccharide (PEL), which is a vital structural component of the biofilm. It helps in adherence of biofilm on the surface and maintenance of cell-to-cell interactions and with other matrix components. Here, in-silico molecular docking and simulation studies were performed against PelA and PelB using ten natural bioactive compounds, individually [podocarpic acids, ferruginol, scopadulcic acid B, pisiferic acid, metachromin A, Cytarabine (cytosine arabinoside; Ara-C), ursolic acid, oleanolic acid, maslinic acid, and betulinic acid], those have already been established as anti-infectious compounds. The results obtained from AutoDock and Glide-Schordinger stated that a marine-derived cytosine arabinoside(Ara-C) among the ten compounds binds active sites of PelA and PelB, exhibiting strong binding affinity [Trp224 (hydrogen), Ser219 (polar), Val234 (hydrophobic) for PelA; Leu365 and Glu389 (hydrogen), Gln366 (polar) for PelB] with high negative binding energy -5.518kcal/mol and -6.056kcal/mol, respectively. The molecular dynamic and simulation studies for 100ns showed the MMGBSA binding energy scores are -16.4kcal/mol (Ara-C with PelA), and -22.25kcal/mol (Ara-C with PelB). Further, ADME/T studies indicate the IC50 values of AraC are 6.10mM for PelA and 18.78mM for PelB, which is a comparatively very low dose. The zero violation of Lipinski's Rule of Five further established that Ara-C is a good candidate for drug development. Thus, Ara-C could be considered a potent anti-biofilm compound against PEL operon-dependent biofilm formation of P. aeruginosa.
Read full abstract