Surimi industry produces a large quantity of byproducts that are currently being utilized to produce low-value commodities. This study aims to extract gelatin from pink perch skin and bone obtained from the surimi industry using a green single-step extraction method. In addition to using a green solvent, that is, acetic acid, the new method combines the multiple steps of pre-treatment and hydrolysis into one single-step extraction process. Response surface methodology was used to optimize extraction parameters (pH, temperature, and time) to maximize yield and l-hydroxyproline (l-hyp) content. The optimum condition for gelatin extraction was obtained at pH 3, 75°C, and 30min. At optimum conditions, gelatin yield and l-hyp content were observed to be 16.07% and 41.26mgg-1 , respectively. The gelatin obtained at optimized condition was further compared with commercial bovine gelatin (BG) in terms of chemical composition and textural, functional, and rheological properties. The results suggested that the optimized pink perch gelatin had higher protein content (92.06%), better gel strength (251.08g), higher imino acid (18.01%), and improved textural and functional properties than the commercially available BG. The optimized single-step gelatin extraction method from pink perch skin and bones is a promising, rapid, and efficient method for the production of good-quality gelatin, which can be further used for the development of high-value products such as food formulations. PRACTICAL APPLICATION: Fish gelatin is widely used in food product development. Most of the existing methods of the development of high-value product such as gelatin, use multi-step process and harsh mineral acid, therefore, are time-consuming and harmful to the environment. This study provides a green single-step gelatin extraction method that provides an efficient, rapid, and convenient method of gelatin extraction and a sustainable solution for fish industry byproduct utilization. The data obtained with this laboratory-scale study provides a strong basis for scale-up studies.
Read full abstract