Abstract Background: Head and neck squamous cell carcinomas (HNSCCs) have high rates of mutation and other alterations along the PI3K/AKT/mTORC signaling axis. This has led to interest in the use of therapeutics targeting this pathway; however, identifying reliable predictive biomarkers to guide patient selection remains challenging. Despite excellent preclinical data, the use of these compounds as monotherapy has been underwhelming in initial clinical trials. The EGFR monoclonal antibody cetuximab remains the only approved targeted agent for HNSCC and with reasonable toxicity profiles, has potential use in combination therapy. Methods: Both catalytic mTORC (AZD8055) and PI3K/mTORC(NVP-BEZ-235) inhibitors were tested +/- cetuximab in several in vitro and in vivo pre-clinical models. A panel of HNSCC cell lines and patient derived xenografts (PDX) were evaluated for PI3K/AKT/mTORC pathway mutation by sequencing and potential protein biomarker by immunoblot and IHC. Cell lines were assayed for sensitivity to all three agents by growth inhibition and clonogenic survival assay. DNA replication (BrdU uptake) and apoptosis (Capase 3/7 activity) were investigated to assess the mechanism of inhibition. The specificity of the molecular targeted effects was confirmed by siRNA knockdown. Five unique PDX models that presented PIK3CA mutation or intrinsic cetuximab resistance were treated with a combination of cetuximab and the dual mTORC inhibitor AZD8055 in a nude mouse model. Matched PDX derived cell strains were generated to investigate differences in response observed in in vitro and in vivo settings. Results: Assessment of the panel of HNSCC cell lines by mutational hotspot sequencing did not reveal any obvious sensitizing mutations, whereas putative protein biomarkers (e.g. PIK3CA, pAKT) were elevated in some cell lines. All cell lines showed modest response to both PI3K/mTORC and dual mTORC inhibition. The addition of cetuximab to either agent produced modest additive effect. Mechanistic studies revealed that growth inhibition rather than death induction was the major anticancer effect. SiRNA knockdown showed similar molecular signaling and functional effects to drug inhibition. Using the PDX models, in vivo single agent mTORC inhibition inhibited growth of a PIK3CA mutant cancer, but had no effect on any PIK3CAWT or a second PIK3CA mutant model. In all models the combination therapy showed greater growth delay than monotherapy. In matched PDX derived cell strains, in vitro responses were similar when grown in 3D culture but cells displayed greater sensitivity when grown in 2D culture, suggesting that tumor microenvironment contributes to response. Conclusions: The uniform ability of PI3K/mTORC and mTORC inhibition to suppress the growth of HNSCC cells highlights the role of this signaling pathway to drive the proliferation. In vivo, despite some PDX models meeting likely selection criteria, the single agent therapy was largely ineffective. Conversely, the combination treatment produced growth delay and suggests the potential for adding a catalytic mTORC inhibitor to cetuximab therapy for HNSCC patients. Overall, these results add to a growing body of evidence suggesting approaches that attempt to match genetic alternation or other biomarker to the optimal therapy in HNSCC remain complex and challenging. Citation Format: Adam D. Swick, Prashanth J. Prabakaran, Margot C. Miller, Amal M. Javaid, Michael M. Fisher, Emmanuel Sampene, Irene M. Ong, Mari Iida, Deric L. Wheeler, Kwangok P. Nickel, Justine Y. Bruce, Randall J. Kimple. Potential and challenges in co-targeting mTORC and EGFR signaling as a therapeutic strategy in HNSCC [abstract]. In: Proceedings of the AACR-AHNS Head and Neck Cancer Conference: Optimizing Survival and Quality of Life through Basic, Clinical, and Translational Research; April 23-25, 2017; San Diego, CA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(23_Suppl):Abstract nr 51.