The aim of this study is to elucidate the pharmacological mechanism underlying the effects of Ginseng Radix et Rhizoma (ginseng) in heart failure (HF), providing a theoretical foundation for its clinical application. The potential mechanism of ginseng in the context of HF was investigated using systems pharmacology that combined network pharmacology, Gene Expression Omnibus (GEO) analysis, molecular docking, and experimental verification. Network pharmacology was employed to identify drug-disease targets. Core gene targets were subsequently subjected to enrichment analysis by integrating network pharmacology with GEO. Molecular docking was utilized to predict the binding affinities between identified targets and ginseng compounds. Furthermore, the therapeutic efficacy of ginseng was validated in an isoproterenol (ISO)-induced rat model of HF. The modulation of key signaling pathways by ginseng was confirmed through Western blot analysis. A total of 154 potential targets of ginseng in the treatment of HF were identified through network pharmacology analysis. The analysis of GSE71613 revealed that the PI3K-Akt pathway, reactive oxygen species, oxidative phosphorylation, MAPK signaling, and Ras signaling pathways are predominantly associated with patients with HF. By integrating the findings from network pharmacology and GEO analysis, ginsenoside Rg1 and ginsenoside Rb3 were identified as the potential components in ginseng, while FN1 and PRKAA2 were recognized as key targets involved in the PI3K-AKT and AMPK pathways, respectively. Molecular docking analysis revealed a strong affinity between the potential components and the identified core targets. In vivo experiments indicated that the extract of ginseng (EPG) significantly ameliorated ISO-induced cardiac dysfunction by improving cardiac parameters such as cardiac left ventricular internal systolic diameter, left ventricular end-diastolic volume, left ventricular end systolic volume, and left ventricular ejection fraction, while also reducing malondialdehyde production. In addition, EPG was found to enhance superoxide dismutase activity and ATP levels, while concurrently reducing the levels of interleukin (IL)-1β, IL-6, and TNF-α. The extract also reduced myocardial oxygen consumption, inflammatory cell infiltration, and the number of damaged myocardial fibers. Moreover, EPG was observed to upregulate the expression of p-PI3K, p-AKT, p-AMPK, and Bcl-2, while downregulating the expression of p-NFκB, TGF-β, and Bax. The therapeutic effects of ginseng on HF are primarily mediated through the PI3K-Akt and AMPK pathways. Ginsenoside Rg1 and ginsenoside Rb3 have been identified as potential therapeutic agents for HF.