The class of intrinsically disordered proteins lacks stable three-dimensional structures. Their flexibility allows them to engage in a wide variety of interactions with other biomolecules thus making them biologically relevant and efficient. The intrinsic disorders of these proteins, which undergo binding-induced folding, allow alterations in their topologies while conserving their binding sites. Due to the lack of well-defined three-dimensional structures in the absence of their physiological partners, the folding and the conformational dynamics of these proteins remained poorly understood. Particularly, it is unclear how these proteins exist in the crowded intracellular milieu. In the present study, molecular dynamic simulations of two intrinsically unstructured proteins and two controls (folded proteins) were conducted in the presence and absence of molecular crowders to obtain an in-depth insight into their conformational flexibility. The present study revealed that polymer crowders stabilize the disordered proteins through enthalpic as well as entropic effects that are significantly more than their monomeric counterpart. Taken together, the study delves deep into crowding effects on intrinsically disordered proteins and provides insights into how molecular crowders induce a significantly diverse ensemble of dynamic scaffolds needed to carry out diverse functions.Communicated by Ramaswamy H. Sarma.
Read full abstract