We show how a complete mathematical model of a physical process can be learned directly from data via a hybrid approach combining three simple and general ingredients: physical assumptions of smoothness, locality and symmetry, a weak formulation of differential equations and sparse regression. To illustrate this, we extract a complete system of governing equations of fluid dynamics – the Navier–Stokes equation, the continuity equation and the boundary conditions – as well as the pressure-Poisson and energy equations, from numerical data describing a highly turbulent channel flow in three dimensions. Whether they represent known or unknown physics, relations discovered using this approach take the familiar form of partial differential equations, which are easily interpretable and readily provide information about the relative importance of different physical effects. The proposed approach offers insight into the quality of the data, serving as a useful diagnostic tool. It is also remarkably robust, yielding accurate results for very high noise levels, and should thus be well suited for analysis of experimental data.
Read full abstract