Physics-based animation is a multidisciplinary area that uses ideas from physics, computer science, and mathematics to create realistic and dynamic movements in virtual settings. The basic ideas and methods of physics-based animation are introduced in this research paper, with an emphasis on how mathematical models and physical laws are used to produce realistic motion in computer-generated images. To construct realistic virtual environments, key disciplines covered include fluid simulation, fabric simulation, rigid body dynamics, and soft body dynamics. The report highlights recent developments in real-time physics simulations and addresses other topics such as processing economy, accuracy, and scalability. Applications for physics-based animation can be found in many different fields, such as virtual reality, simulation training, movies, and video games. The pursuit of more precise and effective physics-based animation is essential as technology develops to produce captivating and realistic virtual worlds. Keywords— Physics-based animation(PBA), virtual environment, Physics simulation, Dynamics, Animation software, Real-time physics, Collision detection, Fluid dynamics, Particle systems, Cloth simulation, Smooth particle hydrodynamics, finite element method, Navier-Stokes, Rigid body dynamics, Soft body dynamics, Deformation, Motion capture, Character animation, Kinematics, Rendering, Game development, Virtual reality, Augmented reality, Computer graphics, Simulation accuracy
Read full abstract