We present a sound and automated approach to synthesizing safe, digital controllers for physical plants represented as time-invariant models. Models are linear differential equations with inputs, evolving over a continuous state space. The synthesis precisely accounts for the effects of finite-precision arithmetic introduced by the controller. The approach uses counterexample-guided inductive synthesis: an inductive generalization phase produces a controller that is known to stabilize the model but that may not be safe for all initial conditions of the model. Safety is then verified via bounded model checking: if the verification step fails, a counterexample is provided to the inductive generalization, and the process further iterates until a safe controller is obtained. We demonstrate the practical value of this approach by automatically synthesizing safe controllers for physical plant models from the digital control literature.