Internet of Things (IoT) deployments are anticipated to reach 29.42 billion by the end of 2030 at an average growth rate of 16% over the next 6 years. These deployments represent an overall growth of 201.4% in operational IoT devices from 2020 to 2030. This growth is alarming because IoT devices have permeated all aspects of our daily lives, and most lack adequate security. IoT-connected systems and infrastructures can be secured using device identification and authentication, two effective identity-based access control mechanisms. Physical Layer Security (PLS) is an alternative or augmentation to cryptographic and other higher-layer security schemes often used for device identification and authentication. PLS does not compromise spectral and energy efficiency or reduce throughput. Specific Emitter Identification (SEI) is a PLS scheme capable of uniquely identifying senders by passively learning emitter-specific features unintentionally imparted on the signals during their formation and transmission by the sender’s radio frequency (RF) front end. This work focuses on image-based SEI because it produces deep learning (DL) models that are less sensitive to external factors and better generalize to different operating conditions. More specifically, this work focuses on reducing the computational cost and memory requirements of image-based SEI with little to no reduction in performance by selecting the most informative portions of each image using entropy. These image portions or tiles reduce memory storage requirements by 92.8% and the DL training time by 81% while achieving an average percent correct classification performance of 91% and higher for SNR values of 15 dB and higher with individual emitter performance no lower than 87.7% at the same SNR. Compared with another state-of-the-art time-frequency (TF)-based SEI approach, our approach results in superior performance for all investigated signal-to-noise ratio conditions, the largest improvement being 21.7% at 9 dB and requires 43% less data.