The rapid increase of single-person households in South Korea is leading to an increase in the incidence of metabolic syndrome, which causes cardiovascular and cerebrovascular diseases, due to lifestyle changes. It is necessary to analyze the complex effects of metabolic syndrome risk factors in South Korean single-person households, which differ from one household to another, considering the diversity of single-person households. This study aimed to identify the factors affecting metabolic syndrome in single-person households using machine learning techniques and categorically characterize the risk factors through latent class analysis (LCA). This cross-sectional study included 10-year secondary data obtained from the National Health and Nutrition Examination Survey (2009-2018). We selected 1371 participants belonging to single-person households. Data were analyzed using SPSS (version 25.0; IBM Corp), Mplus (version 8.0; Muthen & Muthen), and Python (version 3.0; Plone & Python). We applied 4 machine learning algorithms (logistic regression, decision tree, random forest, and extreme gradient boost) to identify important factors and then applied LCA to categorize the risk groups of metabolic syndromes in single-person households. Through LCA, participants were classified into 4 groups (group 1: intense physical activity in early adulthood, group 2: hypertension among middle-aged female respondents, group 3: smoking and drinking among middle-aged male respondents, and group 4: obesity and abdominal obesity among middle-aged respondents). In addition, age, BMI, obesity, subjective body shape recognition, alcohol consumption, smoking, binge drinking frequency, and job type were investigated as common factors that affect metabolic syndrome in single-person households through machine learning techniques. Group 4 was the most susceptible and at-risk group for metabolic syndrome (odds ratio 17.67, 95% CI 14.5-25.3; P<.001), and obesity and abdominal obesity were the most influential risk factors for metabolic syndrome. This study identified risk groups and factors affecting metabolic syndrome in single-person households through machine learning techniques and LCA. Through these findings, customized interventions for each generational risk factor for metabolic syndrome can be implemented, leading to the prevention of metabolic syndrome, which causes cardiovascular and cerebrovascular diseases. In conclusion, this study contributes to the prevention of metabolic syndrome in single-person households by providing new insights and priority groups for the development of customized interventions using classification.
Read full abstract