In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell locomotion. The centrosome is positioned between the leading edge pseudopod and the nucleus. This suggests that the polarized distribution of organelles in the cytoplasm is coupled spatially with structural and functional polarity in the cell cortex. To study cellular polarization with special interest in the roles of microtubules, we have analyzed the effects of microtubule-disrupting reagents and local laser irradiation on behaviors of both the nucleus and the centrosome in living amoebae ofPhysarum polycephalum. Physarum cells often have 2–3 pseudopods. One of the pseudopods keeps extending to become a stable leading edge while the rest retracts, a crucial step that reorients cells during locomotion. The nucleus, together with the centrosome, moves specifically toward the pseudopod that will become the leading edge. Disruption of microtubules with nocodazole randomizes positions of the nucleus, indicating the involvement of microtubules in the directional migration of the nucleus toward a specific pseudopod. The migration direction of the nucleus is reversed immediately after the UV laser is irradiated at regions between the nucleus and the future leading pseudopod. In contrast, irradiation at regions between the future tail and the nucleus does not affect nuclear migration. By immunofluorescence, we confirmed fragmentation of microtubules specifically in the irradiated region. These results suggest that the nucleus is pulled together with the centrosome toward the future leading-edge pseudopod in a microtubule-dependent manner. Microtubules seem to exert the pulling force generated in the cell cortex on the centrosome. They may serve as a mediator of shape changes initiated in the cell cortex to the organelle geometry in the endoplasm.
Read full abstract