The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Read full abstract