DNA-damage formation and repair are coupled to the structure and accessibility of DNA in chromatin. DNA damage may compromise protein binding, thereby affecting function. We have studied the effect of TATA-binding protein (TBP) on damage formation by ultraviolet light and on DNA repair by photolyase and nucleotide excision repair in yeast and in vitro. In vivo, selective and enhanced formation of (6-4)-photoproducts (6-4PPs) was found within the TATA boxes of the active SNR6 and GAL10 genes, engaged in transcription initiation by RNA polymerase III and RNA polymerase II, respectively. Cyclobutane pyrimidine dimers (CPDs) were generated at the edge and outside of the TATA boxes, and in the inactive promoters. The same selective and enhanced 6-4PP formation was observed in a TBP-TATA complex in vitro at sites where crystal structures revealed bent DNA. We conclude that similar DNA distortions occur in vivo when TBP is part of the initiation complexes. Repair analysis by photolyase revealed inhibition of CPD repair at the edge of the TATA box in the active SNR6 promoter in vitro, but not in the GAL10 TATA box or in the inactive SNR6 promoter. Nucleotide excision repair was not inhibited, but preferentially repaired the 6-4PPs. We conclude that TBP can remain bound to damaged promoters and that nucleotide excision repair is the predominant pathway to remove UV damage in active TATA boxes.
Read full abstract