Aluminum nitride is a technologically important wide band-gap semiconductor which has been shown to host bright quantum emitters. We use photon emission correlation spectroscopy (PECS), time-resolved photoluminescence (TRPL), and state-population dynamic simulations to probe the dynamics of emission under continuous wave (CW) and pulsed optical excitation. We infer that there are at least four dark shelving states, which govern the TRPL, bunching, and saturation of the optical transition. We study in detail the emission dynamics of two quantum emitters (QEs) with differing power-dependent shelving processes, hypothesized to result from charge ionization and recombination. These results demonstrate that photon bunching caused by shelving the system in a dark state inherently limits the saturation rate of the photon source. In emitters where increasing optical power deshelves the dark states, we observe an increased photon emission intensity. Published by the American Physical Society 2024
Read full abstract