Photodynamic therapy (PDT), which relies on the production of reactive oxygen species (ROS) induced by a photosensitizer to kill cancer cells, has become a non-invasive approach to combat cancer. However, the conventional aggregation-caused quenching effect, as well as the low ROS generation ability of photosensitizers, restrict their biological applications. In this work, a new Ir(III) complex with a dendritic ligand has been strategically designed and synthesized by ingenious modification of the ancillary ligand of a reported Ir(III) complex (Ir-1). The extended π-conjugation and multiple aromatic donor moieties endow the resulting complex Ir-2 with obvious aggregation-induced emission (AIE) activity and bathochromic emission. In in vitro experiments, importantly, Ir-2 nanoparticles exhibit the excellent photoinduced ROS generation capabilities of O2 •- and 1 O2 , as well as excellent biocompatibility and the lipid droplets (LDs) targeting feature. This study would provide useful guidance to design efficient Ir(III)-based photosensitizers used in biological applications in the future.
Read full abstract