Supramolecular assembly allows multiple chemical/bio-components integrated as one system for cascade biochemical reactions. Herein the graphitic carbon nitrides (g-C3N4) as photocatalyst trapped in a dipeptide hydrogel covering adenosine triphosphate (ATP) synthase accelerates the photophosphorylation through ATP synthesis. Self-assembled N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) as nanofibrils to allow g-C3N4 nanosheets are embedded as a complex Fmoc-FF/g-C3N4 hydrogel. Fmoc-FF gel exhibits good electronic coupling with g-C3N4, which enables a photo-induced proton generation. The transmembrane proton gradient can be established by ATP synthase-lipid reconstituted on the surface of the Fmoc-FF/g-C3N4 hydrogel to enhance the ATP synthesis. It indicates that the Fmoc-FF/g-C3N4/ATP synthase-lipid film can possess a longer-term ATP production capability and allow repeated immersion for sustained ATP production. Such a hydrogel-supported ATP synthesis platform is achieved by a procedure at a larger scale.
Read full abstract