Overheating anomaly detection is essential for the quality and reliability of parts produced by laser powder bed fusion (LPBF) additive manufacturing (AM). In this research, we focus on the detection of overheating anomalies which can lead to various defects in the part including geometric distortion, and poor surface roughness, among others, using photodiode sensor data. Photodiode sensors can collect high-frequency data from the melt pool, reflecting the process dynamics and thermal history. Hence, the proposed method offers a machine learning (ML) framework to utilize photodiode sensor data for layer-wise detection of overheating anomalies. In doing so, three sets of features are extracted from the raw photodiode data: MSMM (mean, standard deviation, median, maximum), MSQ (mean, standard deviation, quartiles), and MSD (mean, standard deviation, deciles). These three datasets are used to train several ML classifiers. Cost-sensitive learning is used to handle the class imbalance between the “anomalous” layers (affected by overheating) and “nominal” layers in the benchmark dataset. To boost detection accuracy, our proposed ML framework involves utilizing the majority voting ensemble (MVE) approach. First, the top three ML classifiers are identified from an initial pool of classifiers, based on their performance in k-fold cross-validation. Next, final predictions are generated using majority voting from the individual predictions of the top three classifiers. We performed 100 iterations to generate statistically reliable results. This proposed method is demonstrated using a case study including an open benchmark dataset of photodiode measurements from an LPBF specimen with deliberate overheating anomalies at some layers. The results from the case study demonstrate that the MSD features yield the best performance for all classifiers, and the MVE classifier (with a mean F1-score of 0.8654) surpasses the individual ML classifiers. Moreover, our machine learning methodology achieves superior results (9.66% improvement in mean F1-score) in detecting layer-wise overheating anomalies, surpassing the existing methods in the literature that use the same benchmark dataset. Finally, based on our results, we provide useful insights and recommendations for future research on applying machine learning techniques for defect detection in AM.