The preparation of imines has drawn increasing attention as they are fundamental intermediates in the production of pharmaceuticals, agricultures, and fine chemicals. Nevertheless, current approaches for imines synthesis mainly focus on thermally driven reactions which always involve the consumption of high price noble metal catalysts, expensive ligands, strong base, and harsh reaction conditions. Herein, we demonstrate single atom nickel anchored on polymeric carbon nitride (Ni-SA@PCN) in Ni-N4 structure for visible light-promoted crossed coupling between aromatic alcohols and aliphatic amines. As expected, the Ni atoms dispersed carbon nitride demonstrates an obviously improved charge separation and transfer as reflected in UV-vis, fluorescence intensity and lifetime, photocurrent density, and electrochemical impedance characterizations. More impressively, the density functional theory (DFT) calculations also reveals that the presence of Ni atoms can dramatically accelerate the absorption of reactive substrates on the surface of PCN. The decreased absorption energy from -0.51 to -3.35 eV, associated with increased O═O bond length from 1.226 to 1.371 Å indicates a huge advantage of single Ni atom on oxygen activation. As a result, the obtained Ni-SA@PCN photocatalyst shows a prominent catalytic efficiency in imines formation with a reaction conversion of 73% and selectivity of >99%. Lastly, the photocatalytic reactions displays an excellent compatibility with various imines being achieved with high yield.
Read full abstract