A rapid and efficient photo-bleaching process was demonstrated with a high-energy nanosecond pulse to recover existing and/or revealed color centers on 10 kGy Gamma-irradiated Yb-doped optical fiber. Multi-mJ pulsed laser based on an optical parametric amplifier system operating at wavelengths of 532 nm, 680 nm and 793 nm was used. The photo-bleaching performance is investigated as a function of the wavelength and energy of the pulsed light source. It was observed that the photo-bleaching level of the Yb-doped optical fiber increased when the exposure time of the pulsed laser light and the photon energy was increased. The maximum PB occurred in the pulsed laser of 532 nm wavelength in the optical fiber. Also, a drastically increase in the PB was observed due to the increasing laser energy at the wavelength of 532 nm and 680 nm pulsed laser. The results show that the recovery levels of color centers in the Yb-doped optical fibers could be reached up to 96 % in a shorter time (h) by using the pulsed laser compared to that of the studies using continuous laser.