Acute liver injury is characterized by massive inflammatory cell infiltration, destruction of liver structure and abnormalities in liver function. Acetylcorynoline (AC) is one of the main chemical components of Corydalis bungeana Turcz. which has been shown to have a protective effect against acute liver injury. However, Whether AC is protective against acute liver injury remains unclear. This study aimed to explore the protective mechanism of AC against acute liver injury from in vivo as well as experiments in vitro. In experimental in vivo studies, AC pretreatment reduced the serum levels of ALT and AST and inhibited the expression of inflammatory factors in the liver of LPS/D-GalN-induced mice and alcohol liver disease mice. RNA-sequencing and molecular docking were used to predict that AC exerts its anti-inflammatory effects through the Toll-like receptor signaling pathway. Using RT-qPCR and Western blotting to detect expression levels of key genes and nodal proteins of the Toll-like receptor signaling pathway, AC was found to inhibit the phosphorylation of nuclear factor-kappaB (NF-ĸB) and c-Jun amino-terminal kinase (JNK). This finding was validated in cellular experiments. In conclusion, AC exerts its anti-hepatic injury effect by suppressing inflammation through inhibition of the TLR4/JNK/NF-ĸB pathway.
Read full abstract